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Variational Data Assimilation 
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x = model state vector
𝐱𝑏= background state vector
𝐲𝐨 = observation state vector 
H = forward observation operator
B = background error covariance matrix
R = observation error covariance matrix

(squared deviation from observation)

(squared deviation from background)

• Cost function (J) is minimized iteratively by a gradient method to get Initial Conditions (ICs).

• Correct estimation of error statistics (B and R) leads to accurate ICs.

• B determines weightage to the background and spread information (physical
consistency).

• Sampled from climatology and contains seasonal variations.

• Homogeneous and isotropic.

• Non-linear error growth of convective processes is not well represented.

B =



Ensemble-Variational Data Assimilation 
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B = α𝑩𝒆 + (1- α )𝑩𝒔

• Errors statistics are sampled from an ensemble of forecasts

• Incorporates non-linear error growth & daily variations (flow-dependency)

• Small ensemble O(50-100) introduces sampling errors in 𝑩𝒆

Hybrid Data Assimilation

• A weighted combination of the climatological and ensemble error statistics 

α [ 0 ; 1]

T𝑩𝒆

α = weight given to 𝑩𝒆

𝑩𝒆= ensemble error covariance matrix
𝑩𝒔= climatological error covariance matrix

x̄ = ensemble mean 

N = number of ensembles

xk= kth ensemble member



Research question?
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• Can initial conditions be improved by using ensemble error statistics in data assimilation?



Methodology: model setup
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Forecast 
System 

Application of Research to Operations at Mesoscale 
(AROME)

Domain 600 x 432 x 90 grid-points
(The Alps at the center of the domain)

Resolution Horizontal - 2.5 km (explicit convection)
vertical - 90 hybrid pressure coordinates

Ensembles 
forecasts 

50 members, Convection-Permitting Limited-Area 
Ensemble Forecasting (C-LAEF) at 2.5km.

Observations Radiosonde and aircraft T and UV

Boundary 
conditions 

Global model ARPEGE AROME domain with topography 
(Geosphere Austria)



Methodology 
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α = weight given to 𝑩𝒆

Experimental setup:

• 50 Ensemble members
• T and UV from radiosonde and aircraft are 

assimilated
• ICs are verified with non-assimilated observation 

Exp. Ensemble 
weight (α)

Ensemble 
member 

3DVAR 0 0

ENVAR 1 50

HYB_XX 0.1 to 0.9 50

• Local convection
• Weak pressure gradient

• convection and warm front

a) 12-08-2022 b) 22-06-2022



Results
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• Different B provides different increments.

Radiosonde S013WIND (~ 200hPa)UV assimilated at 
00UTC 12-08-2022 m/s

Increment = analysis - background Climatological B: 

• Smooth 

• Large scale increment 

Ensemble B (𝑩𝒆):

• Spatial variability

• small scale variations 



Results

11/2/2023kaushambi.jyoti@univie.ac.at Page 8

o Overall using 𝑩𝒆 improves ICs compared to the
operational system. Ecmwf&123

o Hybrid has potential of most benefits yet optimal
weight to 𝑩𝒆 differs for weather scenarios, and
observation assimilated.

𝑅𝑀𝑆𝐷𝑏𝑔 − 𝑅𝑀𝑆𝐷𝑎𝑛𝑙

𝑅𝑀𝑆𝐷𝑏𝑔
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Conclusions
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1. Accurate representation of error statistics is a key factor of DA.

2. Successfully tested hybrid ensemble-variational data assimilation method at convective-scale over
Austria.

3. Incorporating ensemble error statistics in data assimilation showcases potential advantages compared to
the operational system, wherein the Hybrid configuration can lead to substantial benefits.

4. Optimal weights to 𝑩𝒆 depend on various factors and differ for assimilated observations and weather
scenarios.
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